A FORMAL MODEL FOR UNIX SETUID

Tim Levin, Steven J.

Gemini Computers,

P.O, Box 222417,

ABSTRACT

The UNIX setuid mechanism is described in
the context of the GEMSOS architecture.
Motivation for modeling setuid is given,
Modeling and policy requirements for the
control of the setuid mechanism are
presented. The GEMSOS formal security
policy model is compared with the Bell and
LaPadula model(1). The Bell and LaPadula
model is shown to not admit the actions of
a setuid mechanism. Features of the GEMSOS
DAC model are described that represent the
actions of the UNIX setuid mechanism while
limiting their negative effect on the DAC
policy.

INTRODUCTION

Gemini is engaged in the development of a
UNIX-compatible (2) interface to be
supported by an underlying TCB of class Al
as described in the Trusted Computer
System Evaluation Criteria [TCSEC].
has chosen an architecture for its
products which uses hierarchical
protection domains based on protection
rings [SCHRO) to separate security-
relevant from non-security-relevant
functions. These domains are used to
further subdivide security-relevant
functions into those enforcing mandatory
access controls (MAC) and those enforcing
discretionary access controls (DAC),
Non-security-relevant functions are
separated into distinct protection domains
so0 that an operating system such as the
UNIX-compatible interface is protected
from less-privileged application software.

Gemini
secure

The GEMSOS TCB is implemented using Intel
IAPX286 hardware, which provides four

1. In this paper, "Bell and LaPadula
model" refers to the Multics
Interpretation of that model [BLP].

2. UNIX is a trademark of American
Telephone and Telegraph Co.

73
CH2703-7/89/0000/0073$01.00 © 1989 IEEE

Padilla,

and Cynthia E. Irvine

Inc.

Carmel, CA 93922

hardware-enforced privilege levels. The
GEMSOS mandatory security kernel always
occupies hardware privilege level zero.
GEMSOS maps eight hierarchical rings into
the three remaining hardware privilege
levels., Thus, at any instant a process
can include up to three active subjects
(where a subject is considered to be a
process, ring pair), each associated with
a different privilege level.

Table 1 describes the GEMSOS architecture.
The boundaries between the six rows
represent the separation of major
subsystems. Mandatory access controls are
enforced by the GEMSOS security kernel.
MAC support, which includes, for example,
multilevel subjects and login, is confined
to rings 1 and 2. DAC policy is enforced
by the GEMSOS Discretionary TCB, the outer
boundary of which extends to ring 4. The
TCB does not extend beyond ring 4.

In our design, the UNIX-compatible
interface occupies ring S. This operating
system will provide much of the
functionality of a standard UNIX kernel;
however, security-related features such as
identification and authentication are
within the TCB. Applications software
occupies the two least privileged rings in
the system, rings 6 and 7.

TABLE 1. GEMINI ARCHITECTURE

| System | Protection | Comments
| Component 1 Ring i
|Application | 6 — 7 | Commercial-Off-~The-Shelf or other
| | | application-specific software
| | |
|Gemini UNIX-Compatible | 5 | an operating system providing a UNIX
|Interface 1 | interface
|GEMSOS Discretionary TCB | 3 - 4 | provides discretionary access controls
| | | implementing the GEMSOS DAC model
| | 1
| GEMSOS Non_Kernel MAC | 1 -2 | support functions for the GEMSOS mandatory
| Support] | security kernel
| Sysgen | 0 | system generation (must be able to write
| | | kernel-ring segments)
1 1]
|GEMSOS Security Kernel | 0 | provides mandatory access controls

] | i

]

impl

The GEMSOS architecture is in contrast to
various monolithic approaches to a UNIX-
compatible interface in which all UNIX
functionality is encompassed by the TCB. A
limitation of these monolithic
architectures is that there are many
features supported by standard UNIX
interfaces which do not enforce security,
including: the complete set of UNIX file
attributes, the complete set of UNIX
process attributes, starting and stopping
spoolers, and chronometric information.
TCSEC standards for B3 and Al systems
require the minimization of the TCB to
include only security-relevant features,
not a complete range of operating system
functionality. Therefore, in these
systems of the highest assurance, the TCB
interface cannot be the full UNIX
interface.

A distinguishing characteristic of the
UNIX operating system is the "setuid"
mechanism [SYS5]1[RITCH]. UNIX associates
a user id, the process "real id," with
every user process as a result of the user
successfully completing a login.
Permissions to access objects in UNIX are
calculated relative to another id, the
process’'s "effective id." Upon successful
completion of login, the real id and
effective id are both the authenticated
user id. The setuid mechanism allows an
active process to change its effective id
by executing certain program objects. The
result of this change is for the process
to gain discretionary permissions
different than those it had before the
execution of the object. This also breaks
the tie between the user and the subject
acting on the user’s behalf, since the
subject is no longer associated (for DAC
permission decisions) with the user’s
authenticated id.

In order for the GEMSOS TCB to support a
UNIX implementation, special attention
must be given to UNIX’s "setuid" and

"setgid" capabilities. The setuid
capability, which modifies the user
identification for a process,
below. Setgid is similar, but sets the
group identification of a process, and
will not be described in detail. Two

complementary mechanisms comprise setuid

for standard UNIX systems.

The CHMOD and EXEC function calls allow
the
certain code files are executed. Each
executable code file has an owner, a
setuid mode bit, and a setgid mode bit.
CHMOD may be used to set the user and
group "set_id" bits on a program object.
When the EXEC
object,
bit is set,
assumes
group id of the owner of the object.

then the executing process

An explicit SETUID function call is also
provided for invocation from an executing
The SETUID call is

application process.
used to change the effective id of the
process back to its real id. When the
setuid function call is invoked, the

effective user id of a process is changed

to the value passed by the call if:

A. the effective user id of the process
is superuser (In this case the real

user id of the process is also
changed to the value passed by the
call.), or

B. the real user id of the process
matches the user id passed by the
call, or,

is described

setuid mechanism to be invoked when

call is used to execute the
if either the user or group set_id

(as its effective id) the user or

C. in many UNIX implementations, a saved
user id matches the user id passed by
the call.

The UNIX setuid mechanism is intended to
be used to allow users access to system-
sensitive information while restricting

that
mechanism

the scope of their operations on
information. Because the setuid
leaves the real ids of processes
unaffected, and the system audit functions
are based on real ids, setuild has no
impact on audit functions. The remainder
of this paper will describe Gemini’s
approach to modeling the implicit setuid
mechanism.

MODELING AND POLICY REQUIREMENTS FOR
CONTROL OF THE UNIX SETUID MECHANISM

Constraints on the GEMSOS model and policy
were imposed by the requirements of the
TCSEC, as interpreted by NCSC evaluation
team for the GEMSOS TCB, and are discussed
later in this section. In order to
constrain changes of id, the team
indicated that changes in id should only
be allowed when associated with an object.
Currently, this constraint precludes the
use of the SETUID call, while allowing
both CHMOD and EXEC. This report does not
address the modeling of the SETUID call.
Inclusion of the setuid function would
require both additional modeling work and
modification of the constraints described
herein. Use of the SETUID call is still
being studied and may be included
following additional clarification from
the team.

The setuid mechanism provides a means for
associating permissions (e.g., read or
write) with predefined (programmed)
activities, somewhat similar to a software
implementation of protected subsystems
[SALTZ][BUNCH]. This association can be
used to provide an application-specific
set of permissions to objects in a given
domain. These permissions can be viewed by
those invoking the subsystem as access
modes to object types, both of which are
defined by the subsystem creator.

However, since the Bell and LaPadula model
has both current access set and permission
matrix indexed by subject, there is a
problem modeling a state change such as
that induced by the setuid mechanism.
Abstractly, setuid changes a process’s
permissions. This can be modeled either
as a change in permission matrix entries
for the subject representing the process,
or a change in the subject representing
the process (thus resulting in a whole
different row of permissions in the
permission matrix). If setuid is
considered to change the entries of the
permission matrix, there is a problem
mapping this change to a system where
permissions are represented by Access
Control Lists or access bits (e.g., UNIX),
since the execution of the setuid program
results in no corresponding change to the
set of ACLs or access bits.

75

On the other hand, if setuid is considered
to be a change in the subject representing
the process, then there is a problem of
consistency between the current access set
and the permission matrix. Since there is
a different subject representing the
process in the permission matrix, that new
subject must represent the process in the
current access set. However, there 1is no
change in the current accesses of the
process as a result a setuid operation.
This implies that the new subject
representing the process has the same
current accesses as the old subject,
that there is a set of subjects
representing the process with identical
current accesses. However, there is no
model mechanism linking such subjects
together, and the get-access rule of the
Multics Interpretation only changes
current access for one subject.

i.e.,

In order to model the benefits of the
setuid mechanism (i.e., UNIX compatibility
and software enforced protected
subsystems) while minimizing its negative
effect on DAC policy (i.e., breaking the
tie between the authenticated user id and
the effective user id), we represent and
restrict the setuid-mechanism semantics in
the GEMSOS DAC model. These restrictions
take the form of three modeling and four
"policy" requirements:

Modeling:

1. The process shall be represented
by a different subject after the
process changes DAC id.

2. DAC ids shall be associated with
objects for support of the setuid
mechanism,

3. “Control" mode is added to the
list of access modes.

Policy:

1. A process shall only be able to
assume the DAC id that has been
associated with an object.

2. A process shall only assume such
an id if it has current "execute"
access to said object (the
discretionary access property
assures that the process must have
had permission to get current
access).

3. The DAC id associated with an
object shall only be changed to
the calling process’s id, or some
portion thereof if ids have more
than one aspect (e.g., user and
dgroup).

4, The DAC id associated with an
object shall only be changed if
the calling process has "control"
access to the object.

It has also been suggested that there be
some control shown over the entry point
for the object executed under the setuid
mechanism. While this is protection
relevant, it is at a level of detail
beyond that described by the access-
control policy and models discussed here.
The initial "setuid" entry point in the
GEMSOS TCB is strictly controlled and this
control is specified in the formal top
level specification (FTLS), but not in the
GEMSOS DAC model. The UNIX implementation
of entry points for setuid objects can be
supported with the GEMSOS TCB.

MODELING OVERVIEW

The TCSEC requires that a formal security
policy model be produced for TCB systems
in classes B2 through Al. This model must
include a mathematically precise statement
of the abstract security policy enforced
by the TCB and it is used to both
articulate the policy and to prove that
the TCB supports the policy.

The Bell and LaPadula model is a widely
used formal security policy model. The
GEMSOS model (composed of a MAC model
[LEVIN] and a DAC model) is shown to
derive from the basic principles of the
Bell and LaPadula model. The GEMSOS DAC
model discussed herein is in the process
of being mapped to the GEMSOS TCB and is
not final.

The UNIX operating system enforces a DAC
policy, but does not control information
flow (i.e., does not enforce a MAC
policy). Therefore, only the DAC portion
of a formal security policy model is
necessary to describe the security policy
of UNIX.

As described in the previous section, the
UNIX "setuid" mechanism allows users to
use program actions to gain permissions to
objects. This feature has an undesirable
effect on the enforcement of DAC policy:
it breaks the authenticated link between
users and the subjects that act on their
behalf.

In the following sections, the essential
features of the GEMSOS and Bell and
LaPadula models are compared, the GEMSOS
DAC model is described, and specific
elements of the GEMSOS DAC model used to
represent and control setuid are
discussed.

76

COMPARISON OF THE BELL AND LAPADULA AND
GEMSOS MODELS

The Bell and LaPadula model is a
mathematically formulated state transition
model that represents the control of
active subjects’ access to passive
objects. The model consists of elements,
properties, and rules. The elements
represent the state of the model. The
properties represent the global
restrictions on state (for example, the
system security policy is defined in the
properties). The rules define the state
changes for a particular valid
interpretation (e.g., an implementation)
of the model.

Elements

Elements of the Bell and LaPadula and
GEMSOS models include subjects, objects,
modes of access to the objects, and
labels. Further, elements are included to
represent the relation of labels to each
other, the relation of labels to subjects
and objects, the hierarchy of objects, the
access to objects by subjects, and the
permission to objects for subjects.

The Bell and LaPadula model has "trusted
subjects" which are implicitly trusted
from subject-max-level ("read_class") to
system low. In contrast, the GEMSOS model
adds a minimum (“"write_class") label,
which is always dominated by the
read_class label, for all subjects. In
GEMSOS, subjects are trusted when the
read_class and write_class labels are not
equal; they are untrusted when the
read_class and write_class labels are
equal. As a result of the inclusion of
the write_class label instead of system
low, a GEMSOS trusted subject may have
more limited access to objects than a Bell
and LaPadula trusted subject. (Note that
the concept of limiting the range of
"write"” trust for a trusted subject has
subsequently been adapted in other
presentations [BELL][LEE).)

The elements of the GEMSOS model are
represented in the Ina Jo [SCHEI]
specification language (3) as follows
(some of these elements are modified to
represent setuid, below):

TYPE
subject,
object,
access =
label

CONSTANT
obj_label(object)
dominates (label,

VARIABLE
curr_access (subject,object,access)

boolean,
permission(subject,object,access)
boolean,
parent_child(object,object)
: boolean,
read_class(subiject) label,
write_class(subject) label

(execute,read,append,write),

label,
label): boolean

Properties

Properties define the desired security
characteristics for the system. The two
properties defined for the Bell and
LaPadula model are the mandatory security
property and the discretionary security
property. As stated in terms of elements
from the GEMSOS model, the mandatory
security property states that in order to
perform a read operation, the subject’s
read_class label must dominate the
object’s label (called "simple security"),
and in order to perform a write operation,
the subject’s write_class label must be
dominated by the object’s label (called
"confinement").

The discretionary security property, as
enunciated in the Bell and LaPadula model
states that if a subject has current
access to an object, the subject must also
have permission to the object. This means
that when permission to an object is
revoked, current access to the object must
also be revoked, immediately. However,
once a subject has access to an object,
the subject can copy the object, thus
retaining permission to the information
through its permissions to the copy.
Recognizing this, the GEMSOS model
modifies the discretionary security
property to reguire that when NEW current
access is gained, the subject has
permission to the object. The effect of
this change is that the revocation of a
permission is not necessarily reflected

3. See Appendix A for an overview of the
Ina Jo Language syntax.

7

immediately in a corresponding change to
current access. Since the Bell and
LaPadula model, in effect, allows
permission to the information after
permission to the object has been revoked,
the GEMSOS model does not reflect a weaker
policy with respect to information flow.

When the model properties (which define
security) are enforced relative to the
rules (which define state changes), the
"pasic security theorem" is proven to hold
inductively in the context of the state
model: given a secure initial state, the
preservation of security from one state to
the next guarantees system security.

These two basic properties are represented
in the GEMSOS model as follows, using the
notation of Appendix A (some elements of
these properties are modified to represent
setuid, below):

CRITERION /x Mandatory security property x/
a" s:subject,o:object(
(curr_access(s,o,read)
| curr_access(s,o,write)
-> dominates(read_class(s),
obj_label(0))
)
&
(curr_access(s,o,append)
| curr_access(s,o,write)
~> dominates(obj_label(o0),
write_class(s))
)

)
CONSTRAINT /x Discretionary Security
Property x/

a' s:subject,o:object,a:access(
~curr_access(s,o0,a)
&
n"curr_access(s,o0,a)
->

permission(s,o,a))

The initial conditions of the GEMSOS model
are such that the criterion and constraint
are true., Consider "true" an Ina Jo
shorthand for this expression.

INITIAL true

Rules

The specific rules of the Bell and
LaPadula model and the GEMSOS model are
not discussed in this report since they
are both relative to specific systems
(Multics and GEMSOS, respectively).
However, it is important to understand
that regardless of the specific rules
defined for a model, the proof that the
model rules enforce the security
properties demonstrates that the basic
security theorem holds for that model.

A SEPARATE DAC MODEL

A Mandatory Access Control policy defines
classes of information and describes the
allowed (or conversely, the disallowed)
flows between the classes. Typically,
classes are partially ordered. A well
known example of a MAC policy is the
classification system used in many sectors
of the government. Under this policy,
information is classified Top Secret,
Secret, Confidential, or is Unclassified
(thus establishing classes for
information) and the permitted flow of
information is defined:

the

Unclassified -> Confidential

-> Secret -> Top Secret
where "->"
to."

is defined to mean "may flow

A Discretionary Access Control policy
creates domains (in the sense of a
mathematical function) of identified
objects based on accesses permitted (to
those objects) for identified users. Each
user has a domain in which authorization
(e.g., read or write) is granted to all
objects in that domain. Users access
system objects by way of active system
entities (subjects). The authorization
characteristic of DAC policy requires that
there be a strong tie between individual
users and the subjects that act on their
behalf. This tie, referred to as an
“unforgeable id" [SALTZ), is typically
created by some form of identification and
authentication (I&A) mechanism. Since an
identification and authentication policy
is not an access control policy it is not
usually addressed in a formal security
policy model. Interpretation of the model
does however assume the existence and
proper enforcement of such a supporting
policy. In the GEMSOS DAC model, a "DAC
id" is included to help describe how the
tie between users and subjects is created
and maintained.

Recognizing that the DAC and the MAC
policies can be described independently
and are separately enforceable [SHOCK],
the GEMSOS model has been split into
separate MAC and DAC models. This is
advantageous when working with the UNIX
system which does not deal with labels,
but is only concerned with discretionary
security. Thus, the model for UNIX need
not be encumbered with the dominates and
label-relationship elements, nor with the
mandatory security property. As Shockley
points out, in the GEMSOS system, MAC is
enforced in a layer beneath the DAC layer.
This presents an overall enforcement
mechanism that ensures that all system
references are constrained by the
properties of both DAC layer and the
underlying MAC layer. The MAC properties

78

are described in the MAC model and the DAC
properties are described in the separate
DAC model.

-
The elements and properties of the
separate GEMSOS DAC model are represented
as follows (some of these elements are
modified to represent setuid, below):

TYPE
subject,
object,
access=(execute, read, append, write),
label :
VARIABLE
curr_access(subject,object,access)
boolean,
permission(subject,object,access)
boolean,
parent_child(object,object)
boolean
CONSTRAINT

a" s:subject,o:object,a:access(
~curr_access(s,o0,a)
&
n"curr_access(s,o,a)
->
permission(s,o,a))
INITIAL true

This model
restricted
mechanism,

is sufficient to support a
UNIX discretionary access
i.e., one without the setuid
mechanism, For example, the UNIX
protection bits of (RW.RW....) for an
object represent that the owner of the
object and all members of his group have
both read and write permission to the
object, but that the public has no access
to the object. These permissions can be
represented in this model with a true
values in all "permission" entries
containing the subjects representing the
owner and group members, the specified
object, and the modes of read and write.

DAC MODEL ELEMENTS TO CONTROL THE UNIX
SETUID MECHANISM

To represent the setuid mechanism in the
model and enforce the stated modeling and
policy requirements, the following
elements are included in the GEMSOS DAC
model.

TYPE

id,

subj_eq_class,

dac_id = structure of (
user = id,
group = id,
env = id

)I

subject = structure of(
equiv_class= subj_eq_class,
dac_access = dac_id

)I

access = (execute,read,append,

write,control)
VARIABLE

active_subj_id(subj_eqg_class):dac_id,
caller:subj_eq_class,
dac_attribute(object):dac_iqd,

curr_dac_attribute(subj_eqg_class,object)

:dac_id,
permission(dac_id,object,access)
:boolean,

curr_access(subj_eq_class,object,access)

:boolean

The model elements ID and DAC_ID are added
to the model in order to associate a
"user-oriented"” id with the active
subjects of the model. The USER, GROUP
and ENV fields of DAC_ID are provided to
add granularity to the notion of ID. These
allow the model to incorporate the policy
notions of user and group, and allow a
separate "environment" aspect to be
distinguished.

The notion of a system "process" is
modeled as an egquivalence class of
subjects (SUBJ_EQUIV_CLASS); when changing
its DAC_ID, the process changes subjects
within its equivalence class. The current
access set (CURR_ACCESS) 1s indexed by
SUBJ_EQUIV_CLASS. This shows how the
model representation of a process consists
of a class of subjects, each with the same
current access set. Thus, in a given state
the SUBJ_EQUIV_CLASS is the set of all
subjects that may become active within the
process,

The variable ACTIVE_SUBJ_ID indicates
current DAC_ID and (implicitly the
“active" subject) for each equivalence
class of subjects. The model’s PERMISSION
matrix is indexed by DAC_ID. The change
of index shows how a SUBJ_EQUIV_CLASS’s
permissions change after changing DAC_ID.

the

The variable CALLER is added as a global
element. This allows the model to
identify the calling process, independent
of the transform statement, and is useful
in stating global constraints.

The DAC_ATTRIBUTE of an object associates
a DAC_ID with an object.

”

When the object is added to the current
access set (CURR_ACCESS) of a
SUBJ_EQUIV_CLASS, the DAC_ATTRIBUTE 1is
copied to the per-equivalence-class/per-
object variable element,
CURR_DAC_ATTRIBUTE. When a
SUBJ_EQUIV_CLASS (representing a process)
executes the object under the setuid
mechanism, it assumes the DAC_ID stored in
its CURR_DAC_ATTRIBUTE, for that object.
This means that a change to the global
DAC_ATTRIBUTE does not change the
equivalence class’s CURR_DAC_ATTRIBUTE,
i.e., a the per-equivalence-class version
is not revoked with the global attribute.

And finally, "CONTROL" mode is added to
the list of model accesses. This mode is
used to control which subjects can change
the DAC characteristics of objects (as
opposed to the information contained in
the objects).

In the context of the UNIX setuid
mechanism, the "CONTROL" mode is
necessary to allow control of the CHMOD
function presented at the UNIX interface.
Recall that using CHMOD, the owner of a
file can modify its access mode so that
the setuid bits are set, with the
consequent change of effective user id to
that of the file’s owner when the file is
executed.

DAC MODEL PROPERTIES TO CONTROL THE UNIX
SETUID MECHANISM

The following properties are included in
GEMSOS DAC model to implement the policy
requirements stated above. These
properties do not preclude building a
UNIX-compatible setuid mechanism based on
this model. The Ina Jo representation of
the GEMSOS DAC model (including the
properties discussed below) is listed in
Appendix B.

The Current DAC Attribute Property

The Current DAC Attribute Property ensures
that when a SUBJ_EQUIV_CLASS (process)
gets process-local access
(CURR_DAC_ATTRIBUTE) to an attribute of an
object, the attribute (DAC_ID) is the
DAC_ATTRIBUTE of the object. This property
controls which ids a process can switch to
using the setuid mechanism,

CONSTRAINT /x Current DAC Attribute
Property x/
a"eq:subj_eq_class,obj:object(

n"curr_dac_attribute(eqg,obj)
~= curr_dac_attribute(eg,obj)

&

n"curr_dac_attribute(eq,ob])
~= null_dac

->
n"curr_dac_attribute(eg,obj)

= dac_attribute(obj)

Assume ID Property

Assume ID Property ensures that in order
to assume a different DAC_ID, the process
must have current "execute" access
(CURR_ACCESS) to an object whose
“CURRENT_DAC_ATTRIBUTE" contains (the
changed portions of) that DAC_ID. In order
to get this current access, the
SUBJ_EQUIV_CLASS must have had permission
to execute the object. This property
controls which processes can switch ids
using the setuid mechanism.

CONSTRAINT /x Assume ID Property x/
a“"eq:subj_eq_class(
n"active_subj_id(eq)
~= active_subj_id(eq)
>
e" obj:obiject(
curr_access(eq,ob]j,execute)
&n"active_subj_id(eq) .user =
(curr_dac_attribute(eq,obj)
.user
= null_id
=> active_subj_id(eq).user
<>
curr_dac_attribute(eq,obj)
.user

& n"active_subj_id(eq).group =
(curr_dac_attribute(eq,obj)
.group
= null_id
=>
active_subj_id(eq).group
<>
curr_dac_attribute(eq,obj)
.group
)
& n"active_subj_id(eq).env =
(curr_dac_attribute(eq,obj)
.env
= null_id
=> active_subij_id(eq).env
<>
curr_dac_attribute(eq,obj)
.env

1))

80

Dac Attribute Property

Dac Attribute Property ensures that if the
DAC_ATTRIBUTE of an object is changed, it
is only changed to the caller’s
ACTIVE_SUBJECT_ID (or a portion thereof).
The NULL_ID is used to indicate that the
DAC_ATTRIBUTE of the object will not
effect the given portion (USER, GROUP,
ENV) of the calling process’s DAC_ID, when
a new DAC_ID is assumed through the setuid
mechanism. This property controls which
ids can be associated with an object for
the setuid mechanism.

CONSTRAINT /x Dac Attribute Property x/
a'obj:object(
n"dac_attribute(obj)
~= dac_attribute(ob])
->
(n"dac_attribute(obj).user
= null_id

|
n"dac_attribute(obj) .user
= active_subj_id(caller)
.user
)
&
(n"dac_attribute(obj).group
= null_id
|
n"dac_attribute(obj).group
= active_subj_id(caller)
.group
)
&
(n"dac_attribute(obj).env
= null_id
|
n"dac_attribute(obj).env
= active_subj_id(caller)
.env

Discretionary Control Property

The Discretionary Control Property ensures
that the DAC_ATTRIBUTE for an object can
only be changed if the calling process has
CONTROL access to the object. (The GEMSOS
DAC model also ensures that the calling
process must have current write access to
the parent of the object.) This property
controls which processes can set the ids
associated with an object for the setuid
mechanism.

CONSTRAINT /x Discretionary Control

a"

Property x/
o:object(
n"dac_attribute(o)

o,control)
&
e"parent:object(
parent_child(parent,o)
&

curr_access(caller,parent,write)

1)

CONCLUSIONS

The GEMSOS formal security policy model is

divided into mandatory access control

(MAC)
(DAC)

DAC model)

and discretionary access control
portions. The DAC portion (GEMSOS
includes elements and

properties to show that systems
represented by the model exert control

over

the setuid mechanism, that is, the

subjects of the model cannot arbitrarily

change their permissions or (consequently)

their current accesses.

The GEMSOS DAC model is formulated to be
compatible with UNIX setuid and is shown

to:

1. allow the model to reflect a change
of subject when a process changes
user-id,

2. restrict the processes that can use
the setuid mechanism,

3. restrict the id’s that are assumable
through the setuid mechanism,

4, associate an id with objects to
support the setuid mechanism

5. restrict which processes can set the
id associated with a given object,
and

6. restrict the id’s that can be set on
the object.

REFERENCES

[BLP] Bell, D.E. and LaPadula, L.J. ,
"Computer Security Model: Unified
Exposition and Multics
Interpretation,” Tech. report
ESC-TR-75-306, MTR-2997 Rev.1, The
Mitre Corporation, Bedford, Mass.,
March 1976

[BELL) Bell, D. Elliot, "“Security Policy

Modeling for the Next-Generation
Packet Switch,"”
the 1988 IEEE Symposium on

~= dac_attribute(o)
-> permission(active_subj_id(caller),

in Proceedings of

[BUNCH]

[LEE]

[LEVIN]

[RITCH]

{SALTZ1

[SCHEI}

[SCHRO]

[SHOCK]

[SYS5]

[TCSEC]

212~216,
1988

Security and Privacy, pp.
Oakland CA, April 18-21,

Bunch, Steve, "The Setuid Feature
in UNIX and Security," in
Proceedings of the 10th National
Computer Security Conference,
September 1987, pp. 245-253

Lee, Theodore M.P., "Using
Mandatory Integrity to Enforce
“Commercial" Security,” in
Proceedings of the 1988 I1EEE
Symposium on Security and Privacy,

pp. 140-146, Oakland CA, April
18-21, 1988
Levin, T. "Formal Security Policy

Model for the GEMSOS Kernel,"
GEMINI, Technical Report in
preparation.

Ritchie, D.M. and Thompson, K.,
"The UNIX Time-Sharing System,”
The BELL System Technical Journal,
Vol., 57, No. 6, July-August 1978

Saltzer, J.H., and Schroeder,
M.D., "The Protection of
Information in Computer Systems."
In Proceedings of the IEEE, Vol.

63, No. 9, September 1975, pp.
1278-1308.,

Scheid,J., Anderson, S., Martin,
R., and Holtzberg, S., "The Ina Jo

Specification Language Reference

Manual--Release 1." TM
6021/001/02. System Development
Corporation, Santa Monica, Ca.,
1986.

M. Schroeder and J. Saltzer, "A
Hardware Architecture for
Implementing Protection Rings,"

Commun. A.C.M., vol 15, pp. 157-
170, Mar. 1972.
W.R. Shockley and R.R. Schell,

"TCB Subsets for Incremental
Evaluation", in Proc. 3rd
Aerospace Computer Security
Conference, 1987, American
Institute of Aeronautics and
Astronautics, Washington, D.C.

System V Interface Definition,
Select Code No. 320-013, AT&T
Customer Information Center,
Indianapolis, Ind, 1986,

Department of Defense Trusted
Computer System Evaluation
Criteria, DOD 5200.28-STD,
December 1985.

Appendix A. Overview of the Ina Jo
Specification Language Syntax

- - : -

|la"x:TYPE Universal quantifier: for
| all x of type TYPE
|e"x:TYPE Existential quantifier:

| there exists an x of type
| TYPE

In" New-value operator

Inc" No-change operator

|constraint
|
|criterion
|

|

I

|

|

|

|

|

| global property between

|

|

|
{invariant |

|

[

|

|

|

|

|

|

|

1

|

|

|

|

|

|

|

|

|

successive states |

global property for all |

states (top level only) |

global property for all }

states |

comment |

Else |

Then |

Implies |

Oor |

And |
Not

Equals |

|

*x/

Appendix B, Ina Jo Representation of the
GEMSOS DAC Model

The elements and properties of the GEMSOS
DAC model are presented below.

SPECIFICATION gemsos_dac
LEVEL model

TYPE

id,

label,

object,

subj_eq_class,

dac_id = structure of (
user iqg,
group = id,
env = idy,

subject = structure of(
eguiv_class= subj_eqg_class,
dac_access = dac_id),

access = (execute,read,append,

write,control)

CONSTANT
null_id:id,
null_dac:dac_id

82

VARIABLE
active_subj_id(subj_eq_class):dac_id,
caller:subj_eqg_class,
curr_access(subj_eqg_class,object,access)

boolean,
curr_dac_attribute(subj_eq_class,object)

dac_iqd,
dac_attribute(object):dac_id,
parent_child(object,object)

boolean,
permission(dac_id,object,access)

boolean

INITIAL true

CONSTRAINT /x Discretionary Security
Property x/
a" eq:subj_eg_class,o:object,a:access|(
~curr_access(eq,o0,a)
& n"“curr_access(eq,o0,a)
->
permission(active_subj_id(eq),0,a))

CONSTRAINT /x Current DAC Attribute
Property x/
a"eq:subj_eq_class,obj:object(
n"curr_dac_attribute(eq,obj)
~= curr_dac_attribute(eq,ob])
& n'"curr_dac_attribute(eq,cbj)
~= null_dac
->
n"curr_dac_attribute(eq,obj)
= dac_attribute(obj))

CONSTRAINT /x Assume 1D Property x/
a"eq:subj_eq_class(
n"active_subj_id(eq)
~= active_subj_id(eq)
->
e

obj:object(
curr_access(eq,obj,execute)
&
n"active_subj_id(eq).user=

(curr_dac_attribute(eq, obj)
.user
= null_id
=> active_subj_id(eq) .user
<O
curr_dac_attribute(eq,obj)
.user)
&
n"active_subj_id(eq).group =
(curr_dac_attribute(eq, obj)
.group
= null_id
=> active_subj_id(eq).group
<>
curr_dac_attribute(eq,
obj)
.group)
& n"active_subj_id(eq).env =
(curr_dac_attribute(eqg, obj)
.env
= null_id
=)> active_subj_id(eq).env
O
curr_dac_attribute(eq,
obj)
.envy)))

CONSTRAINT /% Dac Attribute Property x/
a'"obj:object(
n"dac_attribute(obj)
~= dac_attribute(obj)
->
(n"dac_attribute(obj) .user
= null_id
|
n"dac_attribute(obj) .user
= active_subj_id(caller)
.user)
&(n"dac_attribute(obj).group
= null_id
|
n"dac_attribute(obj).group
= active_subj_id(caller)
.group)
&(n"dac_attribute(obj).env
= null_id
|
n"dac_attribute(obj).env
= active_subj_id(caller)
.env))

CONSTRAINT /x Discretionary Control
Property x/
a"o:object(
n"dac_attribute(o) ~= dac_attribute(o)
-> permission(active_subj_id(caller),
o,control)
&e"parent:object(
parent_child(parent,o)
&
curr_access(caller,parent,write)))

END model
END gemsos_dac

